#### Improved Polar-Driven Implosion Performance Obtained with Contoured Shells





## Polar-driven (PD) implosion performance on OMEGA has been improved by the use of contoured shells

- PD implosions of D<sub>2</sub>-filled CH shells at a convergence ratio of 19 were performed with triple-picket laser pulses
- The low-mode symmetry of the implosions, diagnosed with x-ray radiography, has been improved by using contoured shells
- Contoured-shell PD implosion yields are increased relative to polardriven spherical shells by a factor of ~2, approaching the yields of equivalent symmetrically driven implosions





#### P. B. Radha, M. J. Bonino, D. R. Harding, J. A. Delettrez, and R. Epstein

University of Rochester Laboratory for Laser Energetics

E. Giraldez

**General Atomics, San Diego, CA** 



## Reduced PD-equatorial drive can be mitigated by using contoured-shell targets



#### Beam repointing and spherical shell

UR 🔌

- Minimizes P<sub>2</sub> mode at the expense of energy coupling
- Significant P<sub>4</sub> mode remains

#### Beam repointing and contoured shell

- Further reduces the magnitude of beam repointing, increases energy coupling
- Both P<sub>2</sub> and P<sub>4</sub> modes are reduced



## High-convergence-ratio PD implosions with spherical shells achieved a small $\ell = 2$ with a remaining $\ell = 4$



E20394a



## PD shimmed targets have been designed with a contoured wall thickness

• A series of *LILAC* runs (1-D hydro) were used to determine the shell thickness needed as a function of intensity



ROCHESTER

## CH shells were precision machined at General Atomics





## The introduction of a contoured shell dramatically changes the shape of a polar-driven implosion



ROCHESTER

E22645

### The change in implosion shape from spherical to contoured shell target is clearly evident



ROCHESTER

# The amplitude of the lowest Legendre modes is significantly reduced by imploding a contoured shell with polar drive





# The yields from the polar-driven contoured-shell implosions exceeded those of polar-driven spherical shells by about a factor of 2



## Polar-driven (PD) implosion performance on OMEGA has been improved by the use of contoured shells

- PD implosions of D<sub>2</sub>-filled CH shells at a convergence ratio of 19 were performed with triple-picket laser pulses
- The low-mode symmetry of the implosions, diagnosed with x-ray radiography, has been improved by using contoured shells
- Contoured-shell PD implosions are increased relative to polar-driven spherical shells by a factor of ~2, approaching the yields of equivalent symmetrically driven implosions



#### The change in implosion shape from sphericalshell target to contoured-shell target is clearly seen with x radiography



UR

#### Shimmed-target radiographs, shot 70589



E22531

